Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The use of height data in gravity field approximation by collocation

Identifieur interne : 001084 ( Istex/Corpus ); précédent : 001083; suivant : 001085

The use of height data in gravity field approximation by collocation

Auteurs : René Forsberg ; C. C. Tscherning

Source :

RBID : ISTEX:817D9A3E959EBA0105230DC34EF07B6CA3016F98

Abstract

The accuracy of a gravity field model depends on the amount of available data and on the variation of the gravity field. When topographic height data are available, for example, in the form of a digital terrain model, it is possible to smooth the gravity field on a local scale by removing the gravitational effects calculated from models of the topographic masses. In this way, significant improvements of the prediction results are obtained in mountainous areas. In this paper we describe methods for the calculation of such gravitational terrain effects, applicable in collocation approximation of the gravity field. The terrain effects on gravity field quantities such as gravity anomalies, deflections of the vertical, and geoid undulations are calculated using a system of rectangular prisms, representing either a quasi‐traditional model of the topography and the isostatic compensation or a residual terrain model, where only the deviation of the topography from a mean elevation surface is considered. To test the terrain reduction methods, numerical prediction experiments have been conducted in the mountainous White Sands area, New Mexico. From gravity anomalies spaced approximately 6 arc min apart, other known gravity anomalies and deflections of the vertical were predicted using collocation. When using terrain effects calculated on the basis of 0.5 × 0.5 arc min point heights, the rms errors decreased by a factor of nearly 3 to 1 arc sec for the deflections and 3–4 mGal for the gravity anomalies, quite insensitive to the actual type of terrain reduction used. The feasibility of using topographic reductions in collocation is thus effectively demonstrated.

Url:
DOI: 10.1029/JB086iB09p07843

Links to Exploration step

ISTEX:817D9A3E959EBA0105230DC34EF07B6CA3016F98

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The use of height data in gravity field approximation by collocation</title>
<author wicri:is="90%">
<name sortKey="Forsberg, Rene" sort="Forsberg, Rene" uniqKey="Forsberg R" first="René" last="Forsberg">René Forsberg</name>
</author>
<author wicri:is="90%">
<name sortKey="Tscherning, C C" sort="Tscherning, C C" uniqKey="Tscherning C" first="C. C." last="Tscherning">C. C. Tscherning</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:817D9A3E959EBA0105230DC34EF07B6CA3016F98</idno>
<date when="1981" year="1981">1981</date>
<idno type="doi">10.1029/JB086iB09p07843</idno>
<idno type="url">https://api.istex.fr/document/817D9A3E959EBA0105230DC34EF07B6CA3016F98/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001084</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The use of height data in gravity field approximation by collocation</title>
<author wicri:is="90%">
<name sortKey="Forsberg, Rene" sort="Forsberg, Rene" uniqKey="Forsberg R" first="René" last="Forsberg">René Forsberg</name>
</author>
<author wicri:is="90%">
<name sortKey="Tscherning, C C" sort="Tscherning, C C" uniqKey="Tscherning C" first="C. C." last="Tscherning">C. C. Tscherning</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1981-09-10">1981-09-10</date>
<biblScope unit="volume">86</biblScope>
<biblScope unit="issue">B9</biblScope>
<biblScope unit="page" from="7843">7843</biblScope>
<biblScope unit="page" to="7854">7854</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">817D9A3E959EBA0105230DC34EF07B6CA3016F98</idno>
<idno type="DOI">10.1029/JB086iB09p07843</idno>
<idno type="ArticleID">1B0573</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The accuracy of a gravity field model depends on the amount of available data and on the variation of the gravity field. When topographic height data are available, for example, in the form of a digital terrain model, it is possible to smooth the gravity field on a local scale by removing the gravitational effects calculated from models of the topographic masses. In this way, significant improvements of the prediction results are obtained in mountainous areas. In this paper we describe methods for the calculation of such gravitational terrain effects, applicable in collocation approximation of the gravity field. The terrain effects on gravity field quantities such as gravity anomalies, deflections of the vertical, and geoid undulations are calculated using a system of rectangular prisms, representing either a quasi‐traditional model of the topography and the isostatic compensation or a residual terrain model, where only the deviation of the topography from a mean elevation surface is considered. To test the terrain reduction methods, numerical prediction experiments have been conducted in the mountainous White Sands area, New Mexico. From gravity anomalies spaced approximately 6 arc min apart, other known gravity anomalies and deflections of the vertical were predicted using collocation. When using terrain effects calculated on the basis of 0.5 × 0.5 arc min point heights, the rms errors decreased by a factor of nearly 3 to 1 arc sec for the deflections and 3–4 mGal for the gravity anomalies, quite insensitive to the actual type of terrain reduction used. The feasibility of using topographic reductions in collocation is thus effectively demonstrated.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>René Forsberg</name>
</json:item>
<json:item>
<name>C. C. Tscherning</name>
</json:item>
</author>
<articleId>
<json:string>1B0573</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>The accuracy of a gravity field model depends on the amount of available data and on the variation of the gravity field. When topographic height data are available, for example, in the form of a digital terrain model, it is possible to smooth the gravity field on a local scale by removing the gravitational effects calculated from models of the topographic masses. In this way, significant improvements of the prediction results are obtained in mountainous areas. In this paper we describe methods for the calculation of such gravitational terrain effects, applicable in collocation approximation of the gravity field. The terrain effects on gravity field quantities such as gravity anomalies, deflections of the vertical, and geoid undulations are calculated using a system of rectangular prisms, representing either a quasi‐traditional model of the topography and the isostatic compensation or a residual terrain model, where only the deviation of the topography from a mean elevation surface is considered. To test the terrain reduction methods, numerical prediction experiments have been conducted in the mountainous White Sands area, New Mexico. From gravity anomalies spaced approximately 6 arc min apart, other known gravity anomalies and deflections of the vertical were predicted using collocation. When using terrain effects calculated on the basis of 0.5 × 0.5 arc min point heights, the rms errors decreased by a factor of nearly 3 to 1 arc sec for the deflections and 3–4 mGal for the gravity anomalies, quite insensitive to the actual type of terrain reduction used. The feasibility of using topographic reductions in collocation is thus effectively demonstrated.</abstract>
<qualityIndicators>
<score>7.639</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>613 x 813 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1678</abstractCharCount>
<pdfWordCount>4639</pdfWordCount>
<pdfCharCount>41432</pdfCharCount>
<pdfPageCount>12</pdfPageCount>
<abstractWordCount>259</abstractWordCount>
</qualityIndicators>
<title>The use of height data in gravity field approximation by collocation</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>86</volume>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<pages>
<total>12</total>
<last>7854</last>
<first>7843</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>B9</issue>
<subject>
<json:item>
<value>GEODESY AND GRAVITY</value>
</json:item>
<json:item>
<value>Geodesy and Gravity: High‐order harmonics of the gravity potential field and local gravity anomalies</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Solid Earth</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
</host>
<publicationDate>1981</publicationDate>
<copyrightDate>1981</copyrightDate>
<doi>
<json:string>10.1029/JB086iB09p07843</json:string>
</doi>
<id>817D9A3E959EBA0105230DC34EF07B6CA3016F98</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/817D9A3E959EBA0105230DC34EF07B6CA3016F98/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/817D9A3E959EBA0105230DC34EF07B6CA3016F98/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/817D9A3E959EBA0105230DC34EF07B6CA3016F98/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">The use of height data in gravity field approximation by collocation</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>1981</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">The use of height data in gravity field approximation by collocation</title>
<author>
<persName>
<forename type="first">René</forename>
<surname>Forsberg</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">C. C.</forename>
<surname>Tscherning</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202b</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1981-09-10"></date>
<biblScope unit="volume">86</biblScope>
<biblScope unit="issue">B9</biblScope>
<biblScope unit="page" from="7843">7843</biblScope>
<biblScope unit="page" to="7854">7854</biblScope>
</imprint>
</monogr>
<idno type="istex">817D9A3E959EBA0105230DC34EF07B6CA3016F98</idno>
<idno type="DOI">10.1029/JB086iB09p07843</idno>
<idno type="ArticleID">1B0573</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1981</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>The accuracy of a gravity field model depends on the amount of available data and on the variation of the gravity field. When topographic height data are available, for example, in the form of a digital terrain model, it is possible to smooth the gravity field on a local scale by removing the gravitational effects calculated from models of the topographic masses. In this way, significant improvements of the prediction results are obtained in mountainous areas. In this paper we describe methods for the calculation of such gravitational terrain effects, applicable in collocation approximation of the gravity field. The terrain effects on gravity field quantities such as gravity anomalies, deflections of the vertical, and geoid undulations are calculated using a system of rectangular prisms, representing either a quasi‐traditional model of the topography and the isostatic compensation or a residual terrain model, where only the deviation of the topography from a mean elevation surface is considered. To test the terrain reduction methods, numerical prediction experiments have been conducted in the mountainous White Sands area, New Mexico. From gravity anomalies spaced approximately 6 arc min apart, other known gravity anomalies and deflections of the vertical were predicted using collocation. When using terrain effects calculated on the basis of 0.5 × 0.5 arc min point heights, the rms errors decreased by a factor of nearly 3 to 1 arc sec for the deflections and 3–4 mGal for the gravity anomalies, quite insensitive to the actual type of terrain reduction used. The feasibility of using topographic reductions in collocation is thus effectively demonstrated.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>GEODESY AND GRAVITY</term>
</item>
<item>
<term>Geodesy and Gravity: High‐order harmonics of the gravity potential field and local gravity anomalies</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1980-10-14">Received</change>
<change when="1981-04-02">Registration</change>
<change when="1981-09-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/817D9A3E959EBA0105230DC34EF07B6CA3016F98/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb3748">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="90">
<doi>10.1002/jgrb.v86.B9</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="86">86</numbering>
<numbering type="journalIssue">B9</numbering>
</numberingGroup>
<coverDate startDate="1981-09-10">10 September 1981</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="40" status="forIssue">
<doi>10.1029/JB086iB09p07843</doi>
<idGroup>
<id type="editorialOffice" value="1B0573"></id>
<id type="unit" value="JGRB3748"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="12"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 1981 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1980-10-14"></event>
<event type="manuscriptAccepted" date="1981-04-02"></event>
<event type="publishedPrint" date="1981-09-10"></event>
<event type="firstOnline" date="2012-09-20"></event>
<event type="publishedOnlineFinalForm" date="2012-09-20"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2013-02-28"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">7843</numbering>
<numbering type="pageLast">7854</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1202">Geodesy and Gravity: High‐order harmonics of the gravity potential field and local gravity anomalies</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb3748-cit-0000" type="self">
<author>
<familyName>Forsberg</familyName>
,
<givenNames>R.</givenNames>
</author>
, and
<author>
<givenNames>C. C.</givenNames>
<familyName>Tscherning</familyName>
</author>
(
<pubYear year="1981">1981</pubYear>
),
<articleTitle>The use of height data in gravity field approximation by collocation</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>86</vol>
(
<issue>B9</issue>
),
<pageFirst>7843</pageFirst>
<pageLast>7854</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/JB086iB09p07843">10.1029/JB086iB09p07843</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB3748.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">The use of height data in gravity field approximation by collocation</title>
<title type="shortAuthors">Forsberg and Tscherning</title>
</titleGroup>
<creators>
<creator xml:id="jgrb3748-cr-0001">
<personName>
<givenNames>René</givenNames>
<familyName>Forsberg</familyName>
</personName>
</creator>
<creator xml:id="jgrb3748-cr-0002">
<personName>
<givenNames>C. C.</givenNames>
<familyName>Tscherning</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb3748-para-0001">The accuracy of a gravity field model depends on the amount of available data and on the variation of the gravity field. When topographic height data are available, for example, in the form of a digital terrain model, it is possible to smooth the gravity field on a local scale by removing the gravitational effects calculated from models of the topographic masses. In this way, significant improvements of the prediction results are obtained in mountainous areas. In this paper we describe methods for the calculation of such gravitational terrain effects, applicable in collocation approximation of the gravity field. The terrain effects on gravity field quantities such as gravity anomalies, deflections of the vertical, and geoid undulations are calculated using a system of rectangular prisms, representing either a quasi‐traditional model of the topography and the isostatic compensation or a residual terrain model, where only the deviation of the topography from a mean elevation surface is considered. To test the terrain reduction methods, numerical prediction experiments have been conducted in the mountainous White Sands area, New Mexico. From gravity anomalies spaced approximately 6 arc min apart, other known gravity anomalies and deflections of the vertical were predicted using collocation. When using terrain effects calculated on the basis of 0.5 × 0.5 arc min point heights, the rms errors decreased by a factor of nearly 3 to 1 arc sec for the deflections and 3–4 mGal for the gravity anomalies, quite insensitive to the actual type of terrain reduction used. The feasibility of using topographic reductions in collocation is thus effectively demonstrated.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>The use of height data in gravity field approximation by collocation</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>The use of height data in gravity field approximation by collocation</title>
</titleInfo>
<name type="personal">
<namePart type="given">René</namePart>
<namePart type="family">Forsberg</namePart>
</name>
<name type="personal">
<namePart type="given">C. C.</namePart>
<namePart type="family">Tscherning</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">1981-09-10</dateIssued>
<dateCaptured encoding="w3cdtf">1980-10-14</dateCaptured>
<dateValid encoding="w3cdtf">1981-04-02</dateValid>
<edition>Forsberg, R., and C. C. Tscherning (1981), The use of height data in gravity field approximation by collocation, J. Geophys. Res., 86(B9), 7843–7854, doi:10.1029/JB086iB09p07843.</edition>
<copyrightDate encoding="w3cdtf">1981</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>The accuracy of a gravity field model depends on the amount of available data and on the variation of the gravity field. When topographic height data are available, for example, in the form of a digital terrain model, it is possible to smooth the gravity field on a local scale by removing the gravitational effects calculated from models of the topographic masses. In this way, significant improvements of the prediction results are obtained in mountainous areas. In this paper we describe methods for the calculation of such gravitational terrain effects, applicable in collocation approximation of the gravity field. The terrain effects on gravity field quantities such as gravity anomalies, deflections of the vertical, and geoid undulations are calculated using a system of rectangular prisms, representing either a quasi‐traditional model of the topography and the isostatic compensation or a residual terrain model, where only the deviation of the topography from a mean elevation surface is considered. To test the terrain reduction methods, numerical prediction experiments have been conducted in the mountainous White Sands area, New Mexico. From gravity anomalies spaced approximately 6 arc min apart, other known gravity anomalies and deflections of the vertical were predicted using collocation. When using terrain effects calculated on the basis of 0.5 × 0.5 arc min point heights, the rms errors decreased by a factor of nearly 3 to 1 arc sec for the deflections and 3–4 mGal for the gravity anomalies, quite insensitive to the actual type of terrain reduction used. The feasibility of using topographic reductions in collocation is thus effectively demonstrated.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1202">Geodesy and Gravity: High‐order harmonics of the gravity potential field and local gravity anomalies</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>1981</date>
<detail type="volume">
<caption>vol.</caption>
<number>86</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B9</number>
</detail>
<extent unit="pages">
<start>7843</start>
<end>7854</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">817D9A3E959EBA0105230DC34EF07B6CA3016F98</identifier>
<identifier type="DOI">10.1029/JB086iB09p07843</identifier>
<identifier type="ArticleID">1B0573</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 1981 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001084 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001084 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:817D9A3E959EBA0105230DC34EF07B6CA3016F98
   |texte=   The use of height data in gravity field approximation by collocation
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024